Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 222: 105453, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32112997

RESUMO

Anti-parasitic drugs used in the aquaculture industry are discharged to the sea after treatment of salmon. In this study, the effects of azamethiphos (AZA) in the Salmosan® formulation and deltamethrin (DEL) in the Alpha Max® formulation, have been assessed in Northern shrimp larvae (Pandalus borealis) when administered both separately and in combination. The exposure concentrations were 100 ng/L for AZA and 2 ng/L for DEL, each representing a 1000-fold dilution of the prescribed concentrations for salmon. These two chemicals were combined at these concentrations to give a third treatment (AZA + DEL). When larvae were exposed for two hours on the first, second and third days post hatch (dph), significantly increased mortality and reduced swimming activity were observed for larvae from the DEL and combined AZA + DEL treatments 4 dph, though not in larvae from the AZA treatment. A single pulse exposure, delivered on the first day post hatch, caused similar effects on mortality and swimming activity 4 dph as the three-pulse exposure. Mortality was driven by the presence of DEL in both experiments, with no amplification or reduction of effects observed when DEL and AZA were combined. Larvae were observed for 13 days following the single pulse exposure, with food limitation introduced as an additional stressor on day 4. In the DEL and AZA + DEL treatments mortality continued to increase regardless of food level, with no larvae completing development to stage II. The overriding toxicity of DEL masked any potential effects the reduced food ration may have exerted. Swimming activity was lower for AZA treated larvae than Control larvae 13 dph, when both groups were fed daily, though no other significant changes to mortality, development to stage II, feeding rate or gene expression were observed. Food limited Control and AZA larvae had lower swimming activity and feeding rate than daily fed Control larvae, with expression of pyruvate kinase and myosin genes also downregulated. However, there was no negative effect on survival or successful development to stage II in these treatments. In addition, mesencephalic astrocyte-derived neurotropic factor was downregulated in food limited Control larvae when compared with the daily fed Controls. Results from this study together with reported estimates of dispersion plume concentrations of discharged pesticides indicate that toxic concentrations of deltamethrin could reach shrimp larvae several kilometers from a treated salmon farm.


Assuntos
Ração Animal , Aquicultura/métodos , Larva/efeitos dos fármacos , Pandalidae/efeitos dos fármacos , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Nitrilas/toxicidade , Organotiofosfatos/toxicidade , Piretrinas/toxicidade , Salmão/crescimento & desenvolvimento
2.
Mar Pollut Bull ; 145: 409-417, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31590804

RESUMO

Knowledge of key species sensitivity for oil spill response (OSR) options is needed to support decision-making and mitigate impact on sensitive life stages of keystone species. Here, Northern shrimp (Pandalus borealis) larvae were exposed for 24 h to a gradient (H-High, M-Medium: 10 times dilution and L-Low: 100 times dilution) of mechanically- (MDO) (H < 6 mg/L total hydrocarbon content) and chemically- (CDO) dispersed oil (Slickgone NS, H < 20 mg/L total hydrocarbon content), followed by a recovery period. Larval mortality, feeding rate and development were evaluated. Overall, the results show that 24 h exposure to field-realistic concentrations of CDO lead to lower survival, reduced feeding rate and slower larval development in P. borealis larvae compared to MDO. These effects persisted during recovery, indicating a higher vulnerability with dispersant use and the need for longer observation periods post-exposure to fully evaluate the consequences for sensitive life-stages from OSR.


Assuntos
Pandalidae/efeitos dos fármacos , Poluição por Petróleo , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Pandalidae/crescimento & desenvolvimento , Poluentes Químicos da Água/química
3.
Ecotoxicol Environ Saf ; 180: 473-482, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31121554

RESUMO

Hydrogen peroxide (H2O2) is used as anti-parasitic veterinary medicine in salmon farms worldwide. In the period from 2009 to 2018 a total of 135 million kg of H2O2 was used in Norway, the world's largest producer of Atlantic salmon. Since the treatment water is discharged to the sea, concerns have been raised about effects of H2O2 on the coastal ecosystem. In the present study, Northern shrimp (Pandalus borealis) have been exposed to short pulses of H2O2 in the PARAMOVE® formulation, followed by a recovery period in clean seawater. The exposure concentrations represented 100, 1000 and 10 000 times dilutions of the prescribed treatment concentration for salmon; 15 mg/L, 1.5 mg/L and 0.15 mg/L H2O2. Significantly increased mortality was observed after 2 h exposure to 15 mg/L H2O2 (50%) and after 2 h exposure to 1.5 mg/L H2O2 on 3 consecutive days (33%), but no mortality was observed after 2 h exposure to 0.15 mg/L. The mortality occurred 2-4 days after the first pulse of exposure. The patterns of acute effects (immobility and death) could be captured with a toxicokinetic-toxicodynamic model (GUTS), which allows extrapolations to LC50s for constant exposure, or thresholds for effects given untested exposure profiles. Effects of H2O2 were also detected in shrimp that survived until the end of the recovery period. The feeding rate was 66% lower than in the control after 12 days of recovery for the three-pulse 1.5 mg/L exposure. Furthermore, dose dependent tissue damage was detected in the gills and evidence of lipid peroxidation in the hepatopancreas in shrimp exposed for 1 h to 1.5 mg/L and 15 mg/L and kept in recovery for 8 days. Fluorescence intensity in the hepatopancreas of treated shrimp increased 47% and 157% at 1.5 mg/L and 15 mg/L, respectively, compared to the control. Local hydrodynamic conditions will determine how fast the concentration of H2O2 will be diluted and how far it will be transported horizontally and vertically. Results from dispersion modelling (literature data) together with the current experiments indicate that treatment water with toxic concentrations of H2O2 (1.5 mg/L) could reach P. borealis living more than 1 km from a treated salmon farm.


Assuntos
Antiparasitários/toxicidade , Brânquias/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Pandalidae/efeitos dos fármacos , Drogas Veterinárias/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Ecossistema , Hepatopâncreas/efeitos dos fármacos , Dose Letal Mediana , Modelos Biológicos , Noruega , Água do Mar/química , Análise de Sobrevida , Fatores de Tempo
4.
Sci Rep ; 8(1): 17380, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478380

RESUMO

Ocean warming (OW) and acidification (OA) are key features of global change and are predicted to have negative consequences for marine species and ecosystems. At a smaller scale increasing oil and gas activities at northern high latitudes could lead to greater risk of petroleum pollution, potentially exacerbating the effects of such global stressors. However, knowledge of combined effects is limited. This study employed a scenario-based, collapsed design to investigate the impact of one local acute stressor (North Sea crude oil) and two chronic global drivers (pH for OA and temperature for OW), alone or in combination on aspects of the biology of larval stages of two key invertebrates: the northern shrimp (Pandalus borealis) and the green sea urchin (Strongylocentrotus droebachiensis). Both local and global drivers had negative effects on survival, development and growth of the larval stages. These effects were species- and stage-dependent. No statistical interactions were observed between local and global drivers and the combined effects of the two drivers were approximately equal to the sum of their separate effects. This study highlights the importance of adjusting regulation associated with oil spill prevention to maximize the resilience of marine organisms to predicted future global conditions.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Aquecimento Global/prevenção & controle , Invertebrados/crescimento & desenvolvimento , Poluição por Petróleo/efeitos adversos , Animais , Mudança Climática , Ecossistema , Concentração de Íons de Hidrogênio , Larva/crescimento & desenvolvimento , Petróleo , Água do Mar
5.
J Toxicol Environ Health A ; 81(10): 361-382, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29537937

RESUMO

This study aimed at providing confidence in the predictability of the impacts of drill cuttings (DC) discharge on the cold-water coral Lophelia pertusa. L. pertusa was exposed to DC from offshore exploration in the lab with the goal to assess precautionary thresholds of effects. Two exposure scenarios with DC were tested: a long-term (LT) pulsed exposure (12 weeks, peak concentrations: 2-50 mg/L, mean concentrations: 1-25 mg/L) and a short-term (ST) continuous exposure (2.5 weeks, mean concentrations: 4-42 mg/L). After exposure, a recovery period of 16 and 4 weeks was maintained in LT and ST, respectively. While there was an assumption that DC might result in an increase in respiration, decrease in growth, enhanced mucus production, reduced fatty acid content, only a significant rise was noted in skeleton growth at DC 4 mg/L and a significant increase of mucus particulate organic carbon at 25 mg/L at end of the exposure. DC did not markedly reduce prey capture rate consecutive to DC exposure. However, the effect of DC produced an increase of coral polyp activity during exposure and a return to pre-exposure conditions after cessation of DC, and coenosarc was smothered from DC even after a long recovery period (4 weeks). Overall, a DC concentration of 10 mg/L seems to represent a threshold above which changes in coral conditions were observed however with no apparent physiological consequences for the coral within the experimental time scale.


Assuntos
Antozoários/fisiologia , Exposição Ambiental , Sedimentos Geológicos/análise , Animais , Relação Dose-Resposta a Droga , Monitoramento Ambiental/métodos , Reprodutibilidade dos Testes , Medição de Risco/métodos , Fatores de Tempo
6.
Aquat Toxicol ; 198: 82-91, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29524742

RESUMO

Increasing use of fish feed containing the chitin synthesis inhibiting anti-parasitic drug diflubenzuron (DFB) in salmon aquaculture has raised concerns over its impact on coastal ecosystems. Larvae of Northern shrimp (Pandalus borealis) were exposed to DFB medicated feed under Control conditions (7.0 °C, pH 8.0) and under Ocean Acidification and Warming conditions (OAW, 9.5 °C and pH 7.6). Two weeks' exposure to DFB medicated feed caused significantly increased mortality. The effect of OAW and DFB on mortality of shrimp larvae was additive; 10% mortality in Control, 35% in OAW, 66% in DFB and 92% in OAW + DFB. In OAW + DFB feeding and swimming activity were reduced for stage II larvae and none of the surviving larvae developed to stage IV. Two genes involved in feeding (GAPDH and PRLP) and one gene involved in moulting (DD9B) were significantly downregulated in larvae exposed to OAW + DFB relative to the Control. Due to a shorter intermoult period under OAW conditions, the OAW + DFB larvae were exposed throughout two instead of one critical pre-moult period. This may explain the more serious sub-lethal effects for OAW + DFB than DFB larvae. A single day exposure at 4 days after hatching did not affect DFB larvae, but high mortality was observed for OAW + DFB larvae, possibly because they were exposed closer to moulting. High mortality of shrimp larvae exposed to DFB medicated feed, indicates that the use of DFB in salmon aquaculture is a threat to crustacean zooplankton.


Assuntos
Ração Animal , Diflubenzuron/toxicidade , Estágios do Ciclo de Vida/efeitos dos fármacos , Pandalidae/efeitos dos fármacos , Pandalidae/crescimento & desenvolvimento , Parasitos/efeitos dos fármacos , Animais , Ecossistema , Comportamento Alimentar/efeitos dos fármacos , Peixes , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Muda/efeitos dos fármacos , Pandalidae/genética , Reação em Cadeia da Polimerase em Tempo Real , Respiração , Análise de Sobrevida , Natação , Transcriptoma/genética , Poluentes Químicos da Água/toxicidade
7.
J Toxicol Environ Health A ; 80(16-18): 941-953, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28876214

RESUMO

Use of the chitin synthesis inhibitor diflubenzuron (DFB) as an antiparasitic drug in salmon aquaculture raises concern over its impact on marine ecosystems. Further, global drivers, such as ocean warming and acidification (OAW), may increase the toxicity of hazardous substances including DFB. The aim of the present study was to examine the combined effects of DFB-medicated salmon feed on ovigerous Northern shrimp (Pandalus borealis) under Control (pHNBS 8.0, 7.0ºC) and OAW conditions (pHNBS 7.6, 9.5ºC). DFB-exposed shrimp consumed on average 0.1-0.3 g medicated feed during the 2-week exposure period, and high mortality (61-73%) was documented at both environmental conditions. There was no significant interaction between OAW and DFB. Only 2-7% of DFB-exposed shrimp molted successfully compared to 65% in Control and 63% in OAW. The shrimp molted earlier (shorter intermolt period) and exhibited higher feeding rate at OAW compared to Control conditions. An additional experiment, where female shrimp were exposed to DFB closer to molting, noted increased mortality after only 4 d exposure, and successful molting for some shrimp after 2 to 3 weeks of depuration. High mortality of shrimp exposed to DFB-medicated feed indicates that the use of this feed in aquaculture could affect local shrimp populations.


Assuntos
Antiparasitários/toxicidade , Diflubenzuron/toxicidade , Muda/efeitos dos fármacos , Pandalidae/efeitos dos fármacos , Ração Animal/análise , Animais , Dieta/veterinária , Relação Dose-Resposta a Droga , Feminino , Peixes , Pandalidae/crescimento & desenvolvimento
8.
J Toxicol Environ Health A ; 80(16-18): 916-931, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28849995

RESUMO

Rising oil and gas activities in northern high latitudes have led to an increased risk of petroleum pollution in these ecosystems. Further, seasonal high UV radiation at high latitudes may elevate photo-enhanced toxicity of petroleum pollution to marine organisms. Zooplanktons are a key ecological component of northern ecosystems; therefore, it is important to assess their sensitivity to potential pollutants of oil and gas activity. As ontogenetic development may be particularly sensitive, the aim of this study was to examine the impact of chronic exposure to oil water dispersion (OWD) on development and feeding of early life stages of the Northern krill, Meganyctiphanes norvegica. In a range of experiments, embryonic, nonfeeding, and feeding larval stages were exposed to concentrations of between 0.01 and 0.1 mg/L of oil or photo-modified oil for 19 and 21 d. No significant effects on egg respiration, hatching success, development, length and larval survival were observed from these treatments. Similarly, evolution of fatty acid composition patterns during ontogenetic development was unaffected. The results indicates a high degree of resilience of these early developmental stages to such types and concentrations of pollutants. However, feeding and motility in later calyptopis-stage larvae were significantly impaired at exposure of 0.1 mg/L oil. Data indicate that feeding larval stage of krill was more sensitive to OWD than early nonfeeding life stages. This might be attributed to the narcotic effects of oil pollutants, their direct ingestion, or accumulated adverse effects over early development.


Assuntos
Exposição Ambiental/efeitos adversos , Euphausiacea/efeitos dos fármacos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Euphausiacea/crescimento & desenvolvimento , Ácidos Graxos/análise , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Modelos Lineares , Análise Multivariada , Poluição por Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
9.
J Toxicol Environ Health A ; 80(5): 266-284, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28569653

RESUMO

Despite the importance of the cold-water coral Lophelia pertusa to deep-sea reef ecosystem functioning, current knowledge of key physiological responses to available food resources is scarce. Scenarios with varying food density may help to understand how corals deal with seasonal variations in the dark ocean and might be used to study consequences of anthropogenic activities potentially affecting food availability. Thus, the physiological responses of L. pertusa to varying food (Artemia salina nauplii) concentration, ranging from 20% to 300% of carbon equivalent turned over by basal coral respiration, were investigated. A starvation group was also included. Measurements of respiration, growth, mucus production, and energy reserves (storage fatty acids) were performed at several time intervals over 26 weeks. In general, data showed a stronger effect of experimental time on measured responses, but no significant influence of food density treatment. In starved corals, respiration rate declined to 52% of initial respiration, while skeleton growth rate was maintained at the same rate as Artemia-fed corals throughout the investigation. Mucus production measured as the sum of dissolved organic carbon (DOC) and particulate organic carbon (POC) was also similar across food treatments, but POC production exceeded that of DOC at the highest food density. No marked effect was observed on storage fatty acids. These results confirm that L. pertusa is highly resilient to environmental conditions with suboptimal food densities over a time scale of months. Regulation of several physiological processes, including respiration and mucus production, possibly in combination with an opportunistic feeding strategy, contributed to this tolerance to maintain viable corals. Thus, it appears that L. pertusa is well adapted to life in the deep sea.


Assuntos
Antozoários/fisiologia , Cadeia Alimentar , Privação de Alimentos , Metabolismo dos Lipídeos , Animais , Antozoários/metabolismo , Artemia , Muco/metabolismo , Noruega , Densidade Demográfica , Respiração , Zooplâncton
10.
Aquat Toxicol ; 180: 295-305, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27776295

RESUMO

Sub-sea geological storage of carbon dioxide (CO2) provides a viable option for the Carbon Capture and Storage (CCS) approach for reducing atmospheric emissions of this greenhouse gas. Although generally considered to offer a low risk of major leakage, it remains relevant to establish the possible consequences for marine organisms that live in or on sediments overlying these storage areas if such an event may occur. The present study has used a series of laboratory exposures and behavioral bioassays to establish the sensitivity of Arctica islandica to simulated leakages of CO2. This long-lived bivalve mollusc is widely distributed throughout the North Sea, an area where geological storage is currently taking place and where there are plans to expand this operation significantly. A recently published model has predicted a maximum drop of 1.9pH units in seawater at the point source of a substantial escape of CO2 from sub-sea geological storage in this region. Valve movements of A. islandica exposed to reduced pH seawater were recorded continuously using Hall effect proximity sensors. Valve movement regulation is important for optimising the flow of water over the gills, which supplies food and facilitates respiration. A stepwise reduction in seawater pH showed an initial increase in both the rate and extent of valve movements in the majority of individuals tested when pH fell to 6.2 units. Exposing A. islandica to pH 6.2 seawater continuously for seven days resulted in a clear increase in valve movements during the first 40h of exposure, followed by a gradual reduction in activity intensity over the subsequent five days, suggesting acclimation. The ability of both exposed and control bivalves to burrow successfully into sediment on completion of this exposure was very similar. A final exposure trial, testing whether increased valve movements initiated by reduced pH were related to foot extension during attempted burrowing, found no such association. In summary, significant changes in valve behavior did not occur until seawater pH fell to 6.2 units. The response took the form of an increase in valve activity rather than closure. The absence of foot extension coincident with increased valve movements indicates A. islandica were not attempting to burrow, leaving the possibility that valve movements are supporting a respiratory response to hypercapnia. In conclusion, A. islandica appears to be tolerant of reductions in seawater pH equivalent to those predicted for substantial losses of CO2 through leakage from sub-sea geological storage.


Assuntos
Comportamento Animal/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Dióxido de Carbono/toxicidade , Sequestro de Carbono , Poluentes Químicos da Água/toxicidade , Animais , Bivalves/fisiologia , Concentração de Íons de Hidrogênio , Movimento/efeitos dos fármacos , Mar do Norte , Água do Mar/química
11.
J Toxicol Environ Health A ; 79(13-15): 526-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27484135

RESUMO

Large-scale storage of CO2 within sub-sea geological formations is a viable option for reducing the volume of this greenhouse gas released directly to the atmosphere from anthropogenic activities. Risks to benthic marine life following possible leakage of gas through the seabed from this carbon capture and storage (CCS) initiative are not yet well established. This study examined behavior (activity patterns) in brown shrimp (Crangon crangon), exposed to a range of reduced seawater pH conditions (7.6, 7, or 6.5) simulating leakage scenarios of varying scales. Brown shrimp have an endogenous rhythmicity associated with their activity, which dictates they are most active during hours of darkness, presumably as protection against vision-dependent predators. This endogenous rhythm in activity continues to be expressed when shrimp are held under constant low-light conditions in the lab and provides an ecologically relevant endpoint to measure when examining the influence of reduced pH on the behavior of these animals. No marked differences in activity pattern were observed between control shrimp maintained at pH 8.1 and those at pH 7.6. However, changes in activity were evident at pH 7 and pH 6.5, where significant shifts in timing and intensity of activity occurred. There was an unexpected increase in activity within periods of expected light, probably signaling efforts by shrimp to migrate away from reduced seawater pH conditions. The loss of this important member of the benthic community due to migration may have important consequences for many of the resilient species that remain.


Assuntos
Dióxido de Carbono/toxicidade , Ritmo Circadiano/efeitos dos fármacos , Crangonidae/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Animais , Crangonidae/fisiologia , Concentração de Íons de Hidrogênio
12.
J Toxicol Environ Health A ; 74(7-9): 424-38, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21391089

RESUMO

Ocean acidification (OA) resulting from anthropogenic emissions of carbon dioxide (CO(2)) has already lowered and is predicted to further lower surface ocean pH. There is a particular need to study effects of OA on organisms living in cold-water environments due to the higher solubility of CO(2) at lower temperatures. Mussel larvae (Mytilus edulis) and shrimp larvae (Pandalus borealis) were kept under an ocean acidification scenario predicted for the year 2100 (pH 7.6) and compared against identical batches of organisms held under the current oceanic pH of 8.1, which acted as a control. The temperature was held at a constant 10°C in the mussel experiment and at 5°C in the shrimp experiment. There was no marked effect on fertilization success, development time, or abnormality to the D-shell stage, or on feeding of mussel larvae in the low-pH (pH 7.6) treatment. Mytilus edulis larvae were still able to develop a shell in seawater undersaturated with respect to aragonite (a mineral form of CaCO(3)), but the size of low-pH larvae was significantly smaller than in the control. After 2 mo of exposure the mussels were 28% smaller in the pH 7.6 treatment than in the control. The experiment with Pandalus borealis larvae ran from 1 through 35 days post hatch. Survival of shrimp larvae was not reduced after 5 wk of exposure to pH 7.6, but a significant delay in zoeal progression (development time) was observed.


Assuntos
Estágios do Ciclo de Vida/efeitos dos fármacos , Mytilus edulis/efeitos dos fármacos , Pandalidae/efeitos dos fármacos , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Animais , Fertilização/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Mytilus edulis/crescimento & desenvolvimento , Oceanos e Mares , Pandalidae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...